PR 更新日 2024.9.12

関係を表す式とは?さまざまな数式記号を分かりやすく解説!練習問題付き!

数学という教科は、積み重ねの学問です。

一つ一つの単元について丁寧に学習し理解を進めなければ、その次の段階の理解に必ず支障をきたしてしまうのです。

今回は中学校数学で学習する、関係を表す式について解説していきます。

さまざまな数式記号が登場しますので、一つ一つ整理しながら学習を進めましょう。

【目次】

【中1数学】関係を表す式

等式「=」

不等式「<,>」

不等式「≦,≧」

関係を表す式の練習問題

【中1数学】関係を表す式

関係を表す式とは

今回解説していく関係式とは、左辺と右辺を持ち、それらの関係性を示す式です。

関係式で左辺と右辺の関係性を示すために使用されるのが、等号と不等号という2種類の記号です。

        【=,≧,≦,<,>】等

またこれらの記号の中で等号を用いた式を等式と言い、不等号を用いた式を不等式と言います。

関係を表す3つの記号

関係式において関係を表す記号には等号と不等号の2種類がありますが、その中でも特によく使う3つの記号を今回は勉強していきましょう。

一つ目は、等号の=です。

これは、左辺と右辺が等しいことを示す記号であり、皆さんもこれまでの数学や算数で常に使用してきたものでしょう。

二つ目の記号は、不等号の≦,≧です。

これは∼以上、∼以下という意味を示しています。

三つ目の記号は、不等号の<,>です。

これは∼超過,∼未満という意味を示しており、∼大なりや∼小なりという言い方をすることもあります。

これらの記号を覚えてから、次の例題に取り組んでみましょう。

✔等号 = 

✔不等号 >,< 

✔不等号 ≧,≦ 

等式「=」

等式「=」の意味

一つ目の等式「=」は、左辺と右辺が等しいことを意味しています。

イコールと呼ばれている、最もよく使用する式記号です。

これを用いた関係式の問題を用意したので、取り組んでみましょう。

等式「=」を使った問題

問1 xの4倍とyの2倍の和は24になる

問1の問題では、xとyのそれぞれを文字を数字で表し左辺として、右辺の24と等しいことを示すことが必要です。

よって解答は 4x+2y=24 となります。

不等式「<,>」

不等式 「≦,≧」の意味

二つ目の不等式「≦,≧」は、∼以上、∼以下という意味を示しています。

例えばこの記号を使って x≦7 という式を作った場合、xに当てはまる数字には式の7が含まれることになります。

不等式 「≦,≧」を使った問題

問2 xの8倍とyの和は23以上

問2でも同様に、xとyの関係を文字と数字で表すことで左辺とし、右辺の23以上の値となることを示しましょう。

これを関係式で表すと、解答は 8x+y≦23 となります。

不等式「≦,≧」

不等式 「<,>」の意味

三つ目の不等式 「<,>」は、∼超過,∼未満という意味を示しており、~大なり,∼小なりという読み方をすることもあります。

この記号を使って、先ほどと同じように x<7 という式を作った場合、xに当てはまる数字には式の7は含まれません。

この違いに注意しつつ、問題に取り組んでみましょう。

不等式 「<,>」を使った問題

問3 xの3倍とyの5倍の差は30より大きい

問3でも同様に、言語化されているxとyの関係を式で表し、30より大きいことを不等号で示しましょう。

差とは引き算のことを指しますから、解答は 3x-5y>30 となります。

関係を表す式の練習問題

関係を表す式を解く3ステップ

  • 言葉を使った式で表してみる
  • その言葉に当てはまる数や文字を考えてみる
  • 式を作る

基本問題

以下の数量の関係を式で表しなさい

(1)1個30円のチョコをx個と1袋130円のクッキーをy袋買ったら、480円だった。

(2)450mの道を分速amで歩いたら10分かからなかった。

関係を表す式を作る基本問題を用意しました。

上の3ステップも参考にしながら、取り組んでみましょう。

基本問題⑴の解答

基本問題⑴の解説をしていきます。

⑴ではx,yのそれぞれの関係性は掛け算であると分かるので、それが480と等しいことを示す関係式を作れば良いと考えます。

これを式にすると、解答は 30x+130y=480 となります。

基本問題⑵の解答

続いて、基本問題⑵の解説をしていきましょう。

⑵では、速さに関連した式を考えることが左辺の式を作る上で必要です。

時間は道のりを速さで割ることで求めることができますから、これが10よりも小さくなることを示せば正解です。

したがって、⑵の解答は 450/a>10 となります。

応用問題

以下の数量の関係を式で表しなさい

(1)昨日x人いた客がy%減って80人になった。

(2)A地点からB地点までxmの距離を分速70mで歩き、B地点からC地点までのymを分速200mの速さで自転車をこいだら45分かかった。

続いては、応用問題です。

日本語の意味合いもよく考えながら、取り組んでみましょう。

応用問題⑴の解答

応用問題はどうだったでしょうか?それでは、早速⑴から解説していこうと思います。

⑴では割合の式を作るため、基本の形は割り算となります。

また、昨日の客数がxですから、今日の客数は減少分を100(あるいは1)から引いたもので割ることで求めることができます。

以上を関係式で表すと、解答は 100-y100x=80 となります。

応用問題⑵の解答

⑵では、より複雑な立式をする必要があります。

A-B地点間とB-C地点間で速度が変わっていますから、それぞれは別の形で表しつつ足し合わせることで左辺を完成させる必要があります。

このことに注意しつつ、速さを求める式を利用して関係式を作ると、解答は

70x+200y=45 となります。

まとめ

今回は、関係を表す式について解説していきました。

たくさんの記号が登場したり、言語を式に直すといった作業を難しく感じた人もいるかもしれません。

ですが、そうした不安も多くの問題演習を積むことで着実に解消されていきます。

【初心者でもわかる】この記事のまとめ

「関係を表す式」に関してよくある質問を集めました。

関係を表す式にはどんな種類がありますか?

関係式には、主に等式と不等式の二種類があります。関係を表す式の詳細はこちらを参考にしてください。

関係を表す式はどんな問題が出題されますか?

関係式は解くものではないので、式を作ることがメインになります。そのため、言語を式に変換するようなタイプの問題が多く出題されます。関係を表す式についてはこちらを参考にしてください。

この記事を企画・執筆した人
-StudySearch編集部-
この記事は、StudySearchを運営している株式会社デジタルトレンズのStudySearch編集部が企画・執筆した記事です。
StudySearchでは、塾・予備校・家庭教師探しをテーマに塾の探し方や勉強方法について情報発信をしています。
StudySearch編集部が企画・執筆した他の記事はこちら→


塾・予備校・家庭教師を探す