【図形が苦手な学生必見】扇形の面積・弧の長さの求め方を分かりやすく解説
中学生で勉強する単元のうち非常に扇形の分野は重要な項目であるとも言われています。
少し複雑な公式を使うことからも点数を取れない生徒も見られますが、実は扇形の図形さえ理解してしまえば、飛躍的に点数が伸びる非常にお得な単元項目になっています。
苦手意識のある生徒さんが多い扇型の単元ですが、この記事を最後まで目を通して復習して定着すれば、扇形の分野が得点源になることも間違いなしです!
扇形をまず知る
扇形とは
まず初めに扇形という形とはどのようなものを指すのか教えて行きます。
扇形とは簡単に説明すると円の中心から円周に伸びていった直線と交わった交点とその間にある円の弧の部分で作られた形の事を扇形と呼びます。
こうして出来た形に注目して見ると扇のように見えますね。
扇形を作る上で円の弧の長さが円の半周よりも長くなってしまったら一見扇形のように見えないようにも思われますが、これも扇形と呼ぶことができます。
この考え方を用いると半円という形も扇形の種類の一つとして捉える事が出来ます。
扇形の中心角
では次に扇形の中心角について教えて行きます。
扇形の中心角ですが、中心角とは扇形を作る上で円の中心から円の弧の部分に向かう2つの直線の間の角度の事を中心角と呼びます。
こちらも先ほど同様に180度を超えたら扇形の中心角として呼ぶ事が出来ないのでは?とも思われますが、こちらも一見扇形として見る事が出来なくても扇形の中心角として呼ぶ事が出来ます。
✔扇形とは円の中心部分から円周に伸びていった交点の間にある弧の部分で構成された形のことである。
✔円の弧の部分が長くなってしまっても扇形の一つとして捉えることができる。
✔中心角とは扇形を作る上で円の中心から円の弧の部分に向かう2つの直線の間の角度の事を中心角と呼ぶことができる。
扇形と度数法
度数法から面積を求める
ではまず初めに円の面積の求め方を復習して行きます。
円の面積の求め方は以下の通りの公式で求める事が出来ます。
復習として確認してみます。
半径×半径×π=円の面積
以上の式で求める事が出来ます。
想像しやすいように円の4分の1の扇形の面積を求めて見ます。
求めたい扇形の面積は円の状態と比較して4分の1の状態ですので、円の公式に4分の1を掛け算してあげれば、円の4分の1の扇形の面積を求める事が出来ます。
次は扇形の中心角が決まっているケースの扇形の面積を求めて見ます。
先ほどの扇形の求め方をもう一度思い出してみましょう。
先ほどは円の状態から比較して4分の1の状態であるため、円の面積に4分の1をかけてあげる事で面積を求めました。
つまり、これを言い換えると360度分の90度をかけた事と同じ事をしたと言い換える事が出来ます。
これを踏まえると、円の公式に扇形の中心角の角度をかけてあげる事で、どんな複雑な扇形の面積を求める事が出来ます。
度数法から弧の長さを求める
次は扇形の面積の求め方の応用として度数法から弧の長さを求めます。
先ほどと同様に円の円周の求め方を復習すると、円周は半径×2π=円周の長さで求める事が出来ます。
これを先ほどと同様に全体の円の4分の1の円の弧の長さで考えて見ます。
すると、求めたい弧の長さは円周の全体の4分の1の長さとなりますので、円周を求める公式に4分の1を掛け算してあげれば円の4分の1の長さの弧の長さを求める事が出来ます。
そこで次は扇形の中心角が決まっているケースから扇形の弧の長さを求めて行きます。
では先ほどの円の弧の求め方を思い出してください。
先ほどのケースでも、円の4分の1の長さの弧を求めた時は円周を求めてそこから4分の1をかけてあげる事で円の弧の長さを求める事が出来ました。
つまりこれも言い換えると、最後に360度分の90度をかけた事と同じ事をしたと言い換える事が出来ます。
これを考慮する事で、円周を求める公式に扇形の中心角の角度をかけてあげる事で、どんな長さの円の弧の長さを求める事が出来ます。
度数法から中心角を求める
では次は度数法での扇形の中心角を求める場合について考えます。
度数法で扇形の中心角を求める場合には必要な条件があります。
その条件とは、扇形の面積が判明している場合、もしくは円の弧の長さが判明している場合。
いずれかの条件を満たしている場合に扇形の中心角を求める事が出来ます。
ではまず初めに面積が判明している場合について考えて行きます。
まず面積をSと置いて、求めたい中心角の部分をaと置いて考えると、次のように考える事が出来ます。
S=半径×半径×π×360度分のaと考える事が出来ます。
この考え方にSに扇形の面積の数値を代入する事でaの中心角の大きさを求める事が出来ます。
次の条件である円の弧の長さがわかっている場合について考えていきます。
では円の弧の部分の長さをlと置いて、求めたい中心角をbと置くと次のように考える事が出来ます。
l=半径×2×π×360度分のbと考える事が出来ます。
この考え方に特定できている円の弧の長さであるlの部分に数値を代入する事でbの中心角の大きさについて求める事が出来ます。
度数法から半径を考える
では次に度数法の考え方から扇形の半径を求める場合について考えていきます。
扇形の中心角をcとして、先ほどの扇形の面積が判明している場合を想定する時の半径を求めていきます。
そうすると、先ほど同様にS=半径×半径×π×360度分のcと考える事が出来ます。
ここで注意して欲しいのが、半径が2回かけられている事です。
答えを導く際に2乗になっている点に注意が必要となります。
✔半径×半径×π=円の面積に扇形の中心角の角度をかけてあげる事で、どんな複雑な扇形の面積を求める事が可能である。
✔半径×2π=円周の長さに扇形の中心角の角度をかけてあげる事で、どんな長さの円の弧の長さを求める事が出来ます。
✔扇形の面積が判明している場合、もしくは円の弧の長さが判明している場合に円の中心角を求めることができる。
扇形と弧度法
弧度法から面積を求める
ではまず初めに弧度法での面積の求め方を考えていきます。
円の面積は半径×半径×πで答えを導き出す事が出来ました。
この場合と一緒である角度を2×πであると考えます。
これに比率を用いて公式を導き出していきたいと思います。
円の面積をSとし、 扇形の中心角をaとしていくと以下のような公式に変形する事が出来ます。
半径×半径×π:2×π=a:Sといった比率と捉える事が出来ます。
これももっと簡略化していくと、さらに以下の通りにさらに変形する事が出来ます。
S=2分の1×半径×半径×aと置き換える事が出来ます。
弧度法から弧の長さを求める
では次は弧度法から弧の長さがどれくらいあるのか求めていきます。
先ほど面積の公式を作り上げた方法と同じように考えていきます。
今までの事を再確認すると、円の弧の部分は2×半径×πで導き出せました。
その時に弧度法を利用する事で、円を2×πと置き換える事が可能です。
これも先ほど同様に比率を用いて公式を導いていきます。
円の弧の部分をlと置いて、角度の部分をbと置くと以下のような比率式を作る事が可能です。
2×半径:2×半径×π=b:lと置き換える事が出来ます。
ここからさらに簡略化すると以下のように変形する事が出来ます。
l= 半径×bといった公式になります。
弧度法から中心角を求める
では次に弧度法を利用して扇形の中心角について求めていきます。
先ほど作り上げた公式から中心角を求める公式を作り変えていくと以下の通りになります。
先ほど作り直した公式から考えると面積がわかっている場合と弧の長さがわかっている場合に弧度法で中心角を導き出す事が出来ます。
最初に面積が判明している場合から考えていきます。
先ほどの面積を求める場合の公式はS=2分の1×半径×半径×aですので、これを変形するとa=(2×S)÷(半径×半径)とさらに変形する事が出来ます。
では円の弧の長さがわかっている場合について求めていきたいと思います。
先ほどの公式を引き出してみると弧の長さは l= 半径×bで求める事が出来ました。
これを中心角を求める場合に変形するとb=l÷半径と変形し直す事が出来ます。
弧度法から半径を求める
では次に弧度法を用いて扇形の半径を求めていきたいと思います。
これもまた面積と円の弧の長さが特定されている二つの条件の時扇形の半径を求める事が出来ます。
こちらもまた面積の数値が判明している場合についてから考えていきます。
先ほどの面積を求める公式はS=2分の1×半径×半径×aですので、これを半径を求める公式に変形し直すと次のようになります。
半径= +√(2×S)÷aと変形する事が出来ます。
では次に円の弧の長さがわかっている場合について考えていきたいと思います。
こちらも先ほどの式を変形して考えていきます円の弧の長さを導き出す公式は l= 半径×bですので、これも今まで同様に半径を導く公式に変形すると半径=l÷bと変換する事が出来ます。
✔弧度法で面積を求める場合にはS=2分の1×半径×半径×aと置き換える事が出来ます。
✔弧度法を用いて円の弧の長さを割り出す場合には l= 半径×bで求める事ができます。
✔弧度法を用いて中心角を割り出す場合面積がわかっている場合にはa=(2×S)÷(半径×半径)で、円の弧の長さが判明している場合にはb=l÷半径で求められる。
例題
基本問題
扇形の面積を求めよう
では実際に問題を解いてみましょう。
今回解いてみる問題はこちらです。
半径12cmで中心角80°のおうぎ形の面積を求めよ
こちらの問題を解いてみます。
この問題で要求されているのは扇形の面積ですので、扇形の面積を求める公式を利用していきたいと思います。
その公式とは、S=半径×半径×π×360度分のaですので、わかっている数値を代入していきましょう。
そうすると次のようになります。
S=12×12×π×360度分の80となります。
これを解いていくと32π㎠となります。
扇形の弧の長さを求めよう
では次の問題を解いていきます。
その問題とはこちらです。
半径5cmで中心角30°のおうぎ形の弧の長さを求めよ。
こちらが解いていただく問題となります。
この問題では扇形の弧の長さを求めているので、弧の長さを求める公式を利用していこうと思います。
その公式とはl=半径×2×π×360度分のbとなります。
こちらにわかっている数値を代入していくと次のようになります。
l=5×2×π×360度分の30となります。
これを解いていくと答えは5/6πcmとなります。
✔分かっている数字は必ず書いておく
✔公式を利用すると簡単に解ける
応用問題
分数が入る計算
では次は扇形の応用問題について考えていきます。
そこで次の問題文はこちらになります。
半径10cmで中心角20°のおうぎ形の面積を求めよ。
ではこちらの問題を解いていきたいと思います。
この問題では扇形の面積を要求しているので、扇形の面積を求める公式を利用していきます。
その公式とはS=半径×半径×π×360度分のaでしたね。
これにわかっている数値を代入していくと次のようになります。
10×10×π×360度分の20こちらが代入した後の式になります。
これをさらに綺麗にしていくと答えは50/9分π㎠となります。
小数点が入る計算
では最後に解いていただきたい問題とはこちらになります。
半径8cm, 中心角40.5°のおうぎ形の弧の長さを求めよ。
こちらが今回解いていただく問題となります。
この問題では扇形の弧の長さを求めているので、弧を求める公式を利用して答えを導き出していきます。
扇形の弧の長さを求める公式はl=半径×2×π×360度分のbでしたね。
ここに現在わかっている数値を代入していくと次のようになります。
8×2×π×360度分の40.5となります。
これを解いていくと最後には9/5πcmとなります。
✔問題文で何が要求されているのか読み取る事が重要である。
✔わかっている数値を当てはめる事で問題の答えにたどり着く事ができる。
✔小数点などの複雑になっても冷静に対処すれば問題の答えにたどり着ける。
中学生におすすめの家庭教師
【マンツーマン指導】家庭教師のトライ
授業形態・特徴
家庭教師のトライは個別指導に力を入れており、今までに収集した莫大なデータから生徒の特徴に合わせた指導方法を採用しています。
加えて学習効率を格段に上げるために記憶定着のための「エピソード反復法」であったり、生徒の「やる気」を引き出す環境が整えられています。
この特徴は他の塾にはみられない家庭教師のトライならではの取り組みです
家庭教師のトライのコース
家庭教師のトライのコースをご紹介します。
家庭教師のトライの高校生向けのコースは、以下の通りです。
- 大学受験対策
- 定期テスト・内申点対策
- 総合型・学校推薦型選抜対策
- 英語資格検定対策
- 内部進学対策
家庭教師のトライは、様々なコースプランをご用意しています。
他にも部活と勉強が両立できるようにサポートをしてくれたり、難関大学受験対策や苦手な科目を集中的に対策するプランなど、一人一人に合わせた学習プランで結果を出します。
いろんな目的やニーズに合わせたコースがあるので、自分に合ったコースを選びましょう。
自分に合わせた学習プランを提案できるので、気になる方はぜひ公式サイトからご相談してみてはいかがでしょうか
また、家庭教師のトライの2024年入試の合格実績は、以下の通りです。
2024年度入試 合格実績 | |||
---|---|---|---|
東京大 | 京都大 | 北海道大 | 東北大 |
名古屋大 | 大阪大 | 九州大 | 一橋大 |
東京工大 | 神戸大 | 金沢大 | 広島大 |
早稲田大 | 慶応大 | 上智大 | 東京理科大 |
国際基督教大 | 明治大 | 青山学院大 | 立教大 |
中央大 | 法政大 | 学習院大 | 関西大 |
関西学院大 | 同志社大 | 立命館大 | 他多数 |
※家庭教師のトライ・個別教室のトライ・トライプラス・トライ式高等学院・トライのオンライン個別指導塾の利用者のうち、2024年度大学入試合格者の合計。
国公立から私立の大学まで多くの合格者がいます。
2024年度の合格者数は、16,851名ととても多くの人数が合格しています。
中学生向けのコースプランは、以下の通りです。
- 公立・私立高校受験対策
- 定期テスト・内申点対策
- 中高一貫校サポート
- 苦手科目克服
家庭教師のトライでは、様々なプランが用意されています。
お子さまの学習進歩に合わせて、徹底的なサポートを行います。
お子さまに合わせた学習プランを提案できるので、気になる方はぜひ公式サイトからご相談してみてはいかがでしょうか
2024年度の入試の合格実績は、以下の通りです。
2024年度入試 合格実績 | |||
---|---|---|---|
灘高 | 開成高 | 渋谷幕張高 | 洛南高 |
愛光高 | 土浦一高 | 宇都宮高 | 宇都宮女子高 |
天王寺高 | 三国丘高 | 西京高 | 神戸高 |
慶応義塾高 | 慶應志木高 | 早大学院高 | 早稲田実業高 |
※家庭教師のトライ・個別教室のトライ・トライプラス・トライ式高等学院・トライのオンライン個別指導塾の利用者のうち、2024年度大学入試合格者の合計。
2024年度の高校入試の合格実績は、上記の通りです。
2024年の合格者数は、19,752名ととても多くの合格実績があります。
小学生向けのコースは、以下の通りです。
- 私立中学受験対策
- 学習の基礎固め・学習習慣の定着
- 算数・英語対策
- 中学学習の先取
家庭教師のトライでは、小学生の時から中学受験に向けた対策をすることが可能です。
また、他にも学習の基礎を固めたり算数や英語の対策、中学学習の先取りまで可能になります。
お子さまに合わせた学習プランを提案できるので、気になる方はぜひ公式サイトからご相談してみてはいかがでしょうか
2024年度の入試合格実績は、以下の通りです。
2024年度入試 合格実績 | |||
---|---|---|---|
開成中 | 桜蔭中 | 広尾学園中 | 慶應義塾中等部 |
早稲田実業中 | 大阪星光学院中 | 神戸女学院中 | 西大和学園中 |
洛南高校附属中 | 同志社中 | 東海中 | 北嶺中 |
※家庭教師のトライ・個別教室のトライ・トライプラス・トライ式高等学院・トライのオンライン個別指導塾の利用者のうち、2024年度大学入試合格者の合計。
上記以外にも多くの中学校の合格実績があります。
詳しい情報は、公式サイトからチェックしてみてください。
家庭教師のトライの料金・授業料
家庭教師のトライの料金は、以下の通りです。
家庭教師のトライの授業料 | |
---|---|
入会金 | 11,000円(税込) |
授業料 | お見積りシミュレーション |
家庭教師のトライは、1人1人学習プランを作成するため料金が異なってきます。
料金については、公式サイトから無料相談をすることで料金の確認をすることが可能です。
料金プランの作成の流れは、以下の通りです。
- お子さまのお悩みや要望のヒアリング
- ご自宅で学習プランナーによる無料学習相談
- 目的達成に向けた料金プランを作成
上記のような流れになっているので、気になる方はぜひ一度無料相談を受けてみてください。
家庭教師のトライの公式サイトから簡単にお申込みができます。
家庭教師のトライの体験レッスン
家庭教師のトライは、2回の体験レッスンを実施しています。
初めて家庭教師を検討している方や教師との相性や実力が気になる方は、特に体験レッスンを受けることをおすすめします。
2回体験レッスンの流れは、以下の通りです。
- 公式サイトよりお申込み
- 教育プランナーと面談
- 教師を選んで2回の体験授業の受講
家庭教師のトライが気になる方は、ぜひ体験レッスンを受講してみてください。
中学生コースについて
では中学生のコースはどんなコースなのか説明していきます。
中学生コースは生徒が部活と両立して勉強を進めたいのか。
あるいは高校受験を見据えたカリキュラムを組んで欲しいなどといった様々な生徒さんの要望に応じたカリキュラムを立てています。
集団塾ではないので、生徒個人の要望に親身になってくれるのはこの家庭教師のトライならではの取り組みです。
料金について
では最後に家庭教師のトライの料金を説明していきます。
気になる料金ですが、家庭教師のトライは家庭それぞれの要望にそった料金プランを提供してくれます。
特に対策したい教科をはじめ、何科目指導して欲しいのかなど様々な項目で料金プランを提案してくれる塾となっております。
教育プランナーによる無料相談も行なっているので気軽に相談できる環境が整っているのが他の塾と比較しても良い点です。
✔塾の形態は基本的に個別指導でトライで収集したデータを使って生徒の学力にあった指導をされている。
✔生徒の目標や環境に合わせて生徒に寄り添ったプランを提供している。
✔料金は低額から可能であり、教育プランナーからの無料相談も可能である。
まとめ
では最後にこの扇形のまとめをします。
扇形の面積と円の弧の部分をはじめ、度数法や弧度法などそれぞれ公式が違うので今一度最後に振り返って確認してみましょう。
- 扇形の面積:S=半径×半径×π×360度分のa
- 扇形の弧の長さ:l=半径×2×π×360度分のb
- 弧度法の扇形の面積:S=2分の1×半径×半径×a
- 弧度法の円の弧の長さ: l= 半径×b
こちらが今回の扇形の単元で重要となった公式となります。
この公式をしっかりと覚えて扇形の単元がテストに出題されたら確実に点数が取れるようにしましょう。
StudySearchでは、塾・予備校・家庭教師探しをテーマに塾の探し方や勉強方法について情報発信をしています。
StudySearch編集部が企画・執筆した他の記事はこちら→
勉強法に関する新着コラム
-
不登校の生徒におすすめの家庭教師とは?必要な理由や選び方...
不登校の生徒におすすめな家庭教師について紹介していきます。家庭教師の適切な選びかたも解説していますので、不登校の生徒様を持つ保護者の方は必見です!
-
【2025年最新】安く通える冬期講習6選ご紹介!安く受け...
冬期講習を安く抑える方法や冬期講習の相場、冬期講習がある塾を小学生・中学生・高校生で分けておすすめしています。
-
【受験生必見】漢字の覚え方について|覚えるコツや効率良く...
本記事では、漢字の覚え方のコツや効率の良い覚え方を伝授します。漢字を習いたての小学生から、漢字の勉強が必要なすべての受験生までどの学年でも通用する方法です。漢字...
-
古典の助動詞を効率良く覚えよう!語呂合わせや覚え方・コツ...
古典の助動詞がなかなか暗記できない方、効率良く手早く暗記したい方必見!古典の助動詞の覚え方やコツ・覚えやすくなる語呂合わせもご紹介します。古典の助動詞でつまづい...
勉強法に関する人気のコラム
-
古典の助動詞を効率良く覚えよう!語呂合わせや覚え方・コツ...
古典の助動詞がなかなか暗記できない方、効率良く手早く暗記したい方必見!古典の助動詞の覚え方やコツ・覚えやすくなる語呂合わせもご紹介します。古典の助動詞でつまづい...
-
四則計算のやり方や教え方のポイントを問題とともに分かりや...
四則計算の解き方を分かりやすく解説します。同単元につまずいてしまった方は是非ご覧ください。また、教え方のポイントも紹介しているので、お子様への指導法に悩んでいる...
-
日東駒専が難化傾向に!偏差値や日東駒専に強い塾・予備校に...
日東駒専の入試が難化した原因・理由はいったい何なのでしょうか? そして日東駒専の最新の偏差値や日東駒専に強い塾、日東駒専に合格するための勉強法も紹介していきま...
-
【中学生・理科】元素記号の覚え方とは?語呂合わせの覚え方...
こちらの記事では、中学生で習う元素記号の覚え方を語呂合わせで解説しています。各原子番号ごとの覚え方やテストで出る原子記号も詳しく解説していますので、苦手克服や予...