ホーム >> 学習関連コラム >> 塾・予備校 >> 場合の数の求め方を練習しよう!階乗や順列、組み合わせの計算を解説
更新日 2025.2.3

場合の数の求め方を練習しよう!階乗や順列、組み合わせの計算を解説

カテゴリ

今回は、場合の数に関する具体的な問題の解き方を解説します。

実際に問題を解きながら、その解法を解説する流れになっているので、場合の数の基礎が身に付いていない場合は、まずは基礎から学習することをおすすめします。

それでは、実際に問題を解いていきましょう。

 

画像

数学の成績を上げるならMeTa

苦手な数学を必ず克服できる塾
数学特化のマンツーマン授業
★週1回の演習授業で質問し放題!
3日ごと数学克服プラン作成

_

階乗を使った練習問題の計算方法

_画像

はじめにご紹介するのは、階乗を使った練習問題の計算方法です。

合わせて2問ご紹介するので、解きながら理解していきましょう。

階乗の基本問題の求め方

まずは、階乗の基本問題にチャレンジしましょう。

「女子3人、男子4人の計7人がいる中で、⑴全員を一列に並べる、⑵女子3人が隣り合うように並べる場合の数は?」こちらの問題を解いてみましょう。

できましたでしょうか?

⑴は、場合の数の基本で学習したものと同じ解き方です。

7人いて、その7人全員を並べます。

並べるということは並ぶ人たちを区別することになるので、順列を考えます。

順列の計算式は「7P7」となるので、これを計算すると、7×6×5×4×3×2×1=5040となります。

ちなみに、7から1まで1になるまでずっと1個ずつ階段状に数字を下げながら掛け算をしていくことを階乗と言い、「7!」ビックリマークのように表すこともできます。

階乗の応用問題の求め方

続いて、⑵についてです。

_画像

まず、女子3人を1つのグループとして考えます。

そうすると、これは男子4人と女子グループ1つの並び順になります。

つまり、5つのものを並べるという問題と同じ解き方をすることになります。

⑴同様、並べるのに使うのは順列です。

よって、5P5=5!=5×4×3×2×1=120となります。

ここで、女子グループは3人でひとかたまりにしましたが、この中にも実は並べ方があります。

誰が一番左側に来て、誰が一番右側に来るかという並び順がグループの中でも区別があるので、この場合の数を計算しましょう。

これも順列なので3P3=3!=6です。

この2つの数字、120と6は「かつ」の関係になっているので、積の法則を使って求めることができます。

よって、答えは120×60=720となります。

CHECK

  • 階乗とは1個ずつ階段状に数字を下げながら掛け算すること
  • 階乗の記号は「!」
  • 隣に並ぶ際はまとめて計算する/li>

順列を使った練習問題の計算方法

_画像

続いて、階乗以外の順列を使った練習問題の解き方を解説します。

今回ご紹介するのは、重複順列円順列です。

それぞれ問題を解きながら理解をしていきましょう。

重複順列を使った問題の求め方

それでは、次の問題にチャレンジしましょう。

「A,B,C,D,Eの5文字から3文字選んで1列に並べる」際の場合の数を求めてください。

ただし、同じ文字を何回でも使って良いとします。

できましたでしょうか?

_画像

今回は何回でも同じ文字を使っていいとのことで、条件が変わっています。

1番目に置く文字は5通りで変わりありません。

ただ2番目も同じ文字を使って良いので、5通りの選び方があります。

3番目も同様に5通りあるので、全て5通りの選び方があることになります。

それぞれの選び方は、「かつ」の条件に当てはまるので、積の法則を使います。

答えは、「5³=125通り」となります。

このように、何回でも使って良いとする順列のことを、重複順列と言います。

続いて、もう1問問題を解いてみましょう。

「5人でじゃんけんするときの手の出し方」の場合の数を求めてください。

  • #

    できましたでしょうか?これも先ほどの問題と同じ、重複順列の考え方を使います。

一人ひとりのじゃんけんの出し方は自由なので、全員が「グー・チョキ・パー」の3通りから選ぶことになります。

さらに、誰が「グー・チョキ・パー」のどれを出したのかの区別もあるので、順列です。

よって、答えは「3⁵=243通り」です。

円順列を使った問題の求め方

それでは、こちらの問題にも挑戦してみましょう。

「A,B,C,D,Eの5文字を円形に並べる」

できましたでしょうか?

_画像

今までの問題では1列に並べていましたが、今回は円形に並べます。

円形に並べるときは、1列に並べるときと考え方が異なるので注意が必要です。

1列に並べる際は、ABCDEという文字列とBCDEAという文字列は別の並び順でした。

しかし、円形に並べると、この2つは同じ並び順になります。

BCDEAに並べられた円を少しだけ回転させるとABCDEの並べ方と一致します。

よって、1列に並べるときと同じような数え方をしてしまうと、無駄に多く数えてしまうことになります。

ABCDEという並び順は、BCDEA、CDEAB、DEABC、EABCDという4つの並び順と一致します。

よって、5つの並び順がダブるので、1列に並べる並べ方を5で割ると答えが出ます。

答えは「5!÷5=(5×4×3×2×1)÷5=120÷5=24通り」となります。

このように、円形に並べる並べ方のことを円順列と言います。

CHECK

  • 重複順列は何回でも使って良い場合に使う
  • 円順列は円形に並べる並べ方
  • 円順列はダブった分で割る

組み合わせを使った練習問題の計算方法

_画像

最後に、組み合わせを使った練習問題について解説します。

それぞれ問題を解きながら理解していきましょう。

組み合わせの基本問題の求め方

それでは、この問題に挑戦しましょう。

「8人を4人、3人、1人に分ける」

できましたでしょうか?

_画像

この問題では、8人から4人を選び、4人から3人を選び、残った1人を選びます。

ここで、選ばれた人たちには区別があるでしょうか?

ありませんよね。

よって、順列ではなく、組み合わせで考えることになります。

8人から4人を選ぶのは8C4、4人から3人を選ぶのは4C3、1人から1人を選ぶのは1C1で計算できます。

これらは、同時に起こらなければならないので、「かつ」の条件となり、積の法則を使うことで求められます。

よって、答えは「8C4×4C3×1=70×4×1=280通り」となります。

組み合わせと順列を合わせた問題の求め方

それでは、組み合わせの考えを踏まえて、もう1問解いてみましょう。

「8人を4人ずつ分ける」

できましたでしょうか?

_画像

先ほどの問題と、途中まで考え方が全く一緒です。

8人から4人を選んで、その選んだ4人の中で区別はしないので、これは組み合わせを使う問題となります。

よって、8人から4人選ぶので8C4、残った4人から4人を選ぶので、4C4です。

これらは同時に起こらなければならないので、積の法則を使います。

ただ、ここから先が少し異なります。

先ほどは、4人、3人、1人と、全てのグループの人数が違いました。

しかし、今回はどちらも4人組になります。

そこで、この2つの4人組は区別をしなければならないのです。

よって、選んだ後のグループの数の順列で割らなければいけません。

2の順列は「2×1」なので、答えは「8C4×4C4÷2×1=70×1÷2=35」となります。

CHECK

  • 区別がなければ組み合わせを使う
  • 分けたグループが同じ人数であれば、その数の順列で割る

場合の数・階乗のおすすめの参考書・勉強法

_画像

階乗を含んだ場合の数の練習問題のおすすめの勉強法は、さまざまな問題に触れることです。

基礎が身についている方は、さまざまなパターンの問題を解いて、解法を頭に入れることが大切です。

ぜひ繰り返しさまざまな問題に触れ、解ける問題のバリエーションを増やしていきましょう。

  • #

    場合の数の基礎がまだ身についていない方は、さまざまな練習問題を解く前に、解き方の2つのポイントを習得しましょう。

基礎が身についた上で、応用問題を解くからこそ実力がつくので、焦らず基礎に立ち返って学習しましょう。

また、数学の成績が上がらない方でよくあるケースが、数学の勉強時間が少ないというものです。

もちろん数学だけを勉強するわけにはいきませんが、数学の成績を上げるためには、かなりの時間を費やす必要があります。

勉強時間のおよそ半分は数学に費やしてみてください。

そのくらいの勉強時間を確保することで、基礎が定着し問題演習にも取り組めるようになるので、成績の向上も望めます。

ぜひ、多くの時間を数学に費やしましょう。

問題集の勉強範囲

場合の数・階乗のおすすめの勉強法は、以下の問題集を繰り返し解くことです。

何度も解いて解法を頭に入れましょう。

  • 青チャート【第1章場合の数】1集合の要素の個数、2場合の数、3順列、5組み合わせ
  • サクシード【第1章場合の数と確率】3場合の数⑴、4場合の数⑵、5順列、7組み合わせ⑴、8組み合わせ⑵
  • 4STEP【第1章場合の数と確率】2場合の数、3順列、5組み合わせ
  • Legend【第6章場合の数と確率】13集合の要素の個数と場合の数、14順列と組み合わせ

基礎が身についた状態であれば、たくさんの問題に触れることが1番成績を向上させるために必要なことです。

さまざまな問題に触れ、さまざまな解法を知り、繰り返し学習して身につけていきます。

大変ではありますが、ここをやり切るだけで成績がかなり変わってきます。

無理だと自分で決めつけるのではなく、ぜひ1問1問取り組んでいきましょう。

CHECK

  • 成績を上げるには問題演習が必要
  • さまざまな問題を解き解法を頭に入れる
  • 基礎が身についていない人はポイントから復習

マンツーマンで数学を学ぶ「オンライン数学克服塾MeTa」

画像

オンライン数学克服塾MeTaの基本情報
対象 中学生・高校生
授業形式 オンライン(個別1対1、集団)
特徴 数学克服・対策に特化したオンライン専門塾

数学に対する苦手を無くす指導

オンライン数学克服塾MeTaは、数学に特化したオンライン個別指導塾となっており、数学の苦手を克服したい生徒にピッタリになっています。

指導としては、思考力の向上を重視しており、解き方の理解やどのようなロジックでこの答えになるのかなどそれぞれの事象に対してしっかりと理解できるまで指導しています。

そのためには、生徒との対話の時間をしっかりと取って、各生徒の理解度やつまづいている部分、苦手意識が生まれている原因などを追求していきます。

そのため、基礎からちゃんと教えてもらえるのかが心配、という方でも問題なく学習を進められるでしょう。

↓↓MeTaの詳細はこちら↓↓

場合の数・階乗を勉強するなら「家庭教師のトライ」

_画像

正弦定理・余弦定理を勉強するなら「家庭教師のトライ」がおすすめです。

対象 小学生・中学生・高校生
授業形式 家庭教師
特徴 120万人以上の指導実績を誇る全国No.1家庭教師

なぜおすすめなのか、その理由を2つご紹介します。

「トライ学習診断」で得意と苦手を正確に把握

家庭教師のトライでは「トライ学習診断」を取り入れています。

従来の診断では2時間ほどかかるところを、およそ10分の1である約10分間の診断を行うだけで、どの単元が得意なのか、苦手なのかについて、単元の細かい部分まで把握することができます。

理解度は「得意」「やや苦手」「苦手」の3段階で判断されます。

そのデータと周辺地域の情報をもとに、教育プランナーが一人ひとりに合わせた学習計画を作成します。

授業の進度や定期テスト、入学試験などに合わせた計画をプロが立ててくれるので、安心して学習できます。

中には、トライ学習診断を受けたことで1ヶ月で偏差値が平均6以上上がったり、定期テストの点数が平均15点ほど上がっていたりするなど、多くの効果が出ています。

家庭教師のトライのコース

家庭教師のトライのコースをご紹介します。

家庭教師のトライの高校生向けのコースは、以下の通りです。

  • 大学受験対策
  • 定期テスト・内申点対策
  • 総合型・学校推薦型選抜対策
  • 英語資格検定対策
  • 内部進学対策

家庭教師のトライは、様々なコースプランをご用意しています。

他にも部活と勉強が両立できるようにサポートをしてくれたり、難関大学受験対策や苦手な科目を集中的に対策するプランなど、一人一人に合わせた学習プランで結果を出します。

いろんな目的やニーズに合わせたコースがあるので、自分に合ったコースを選びましょう。

自分に合わせた学習プランを提案できるので、気になる方はぜひ公式サイトからご相談してみてはいかがでしょうか

また、家庭教師のトライの2024年入試の合格実績は、以下の通りです。

2024年度入試 合格実績
東京大 京都大 北海道大 東北大
名古屋大 大阪大 九州大 一橋大
東京工大 神戸大 金沢大 広島大
早稲田大 慶応大 上智大 東京理科大
国際基督教大 明治大 青山学院大 立教大
中央大 法政大 学習院大 関西大
関西学院大 同志社大 立命館大 他多数

※家庭教師のトライ・個別教室のトライ・トライプラス・トライ式高等学院・トライのオンライン個別指導塾の利用者のうち、2024年度大学入試合格者の合計。

国公立から私立の大学まで多くの合格者がいます。

2024年度の合格者数は、16,851名ととても多くの人数が合格しています。

中学生向けのコースプランは、以下の通りです。

  • 公立・私立高校受験対策
  • 定期テスト・内申点対策
  • 中高一貫校サポート
  • 苦手科目克服

家庭教師のトライでは、様々なプランが用意されています。

お子さまの学習進歩に合わせて、徹底的なサポートを行います。

お子さまに合わせた学習プランを提案できるので、気になる方はぜひ公式サイトからご相談してみてはいかがでしょうか

2024年度の入試の合格実績は、以下の通りです。

2024年度入試 合格実績
灘高 開成高 渋谷幕張高 洛南高
愛光高 土浦一高 宇都宮高 宇都宮女子高
天王寺高 三国丘高 西京高 神戸高
慶応義塾高 慶應志木高 早大学院高 早稲田実業高

※家庭教師のトライ・個別教室のトライ・トライプラス・トライ式高等学院・トライのオンライン個別指導塾の利用者のうち、2024年度大学入試合格者の合計。

2024年度の高校入試の合格実績は、上記の通りです。

2024年の合格者数は、19,752名ととても多くの合格実績があります。

小学生向けのコースは、以下の通りです。

  • 私立中学受験対策
  • 学習の基礎固め・学習習慣の定着
  • 算数・英語対策
  • 中学学習の先取

家庭教師のトライでは、小学生の時から中学受験に向けた対策をすることが可能です。

また、他にも学習の基礎を固めたり算数や英語の対策、中学学習の先取りまで可能になります。

お子さまに合わせた学習プランを提案できるので、気になる方はぜひ公式サイトからご相談してみてはいかがでしょうか

2024年度の入試合格実績は、以下の通りです。

2024年度入試 合格実績
開成中 桜蔭中 広尾学園中 慶應義塾中等部
早稲田実業中 大阪星光学院中 神戸女学院中 西大和学園中
洛南高校附属中 同志社中 東海中 北嶺中

※家庭教師のトライ・個別教室のトライ・トライプラス・トライ式高等学院・トライのオンライン個別指導塾の利用者のうち、2024年度大学入試合格者の合計。

上記以外にも多くの中学校の合格実績があります。

詳しい情報は、公式サイトからチェックしてみてください。

家庭教師のトライの料金・授業料

家庭教師のトライの料金は、以下の通りです。

家庭教師のトライの授業料
入会金 11,000円(税込)
授業料 お見積りシミュレーション

家庭教師のトライは、1人1人学習プランを作成するため料金が異なってきます。

料金については、公式サイトから無料相談をすることで料金の確認をすることが可能です。

料金プランの作成の流れは、以下の通りです。

~料金プラン作成の流れ~
  1. お子さまのお悩みや要望のヒアリング
  2. ご自宅で学習プランナーによる無料学習相談
  3. 目的達成に向けた料金プランを作成

上記のような流れになっているので、気になる方はぜひ一度無料相談を受けてみてください。

家庭教師のトライの公式サイトから簡単にお申込みができます。

家庭教師のトライの体験レッスン

家庭教師のトライは、2回の体験レッスンを実施しています。

初めて家庭教師を検討している方や教師との相性や実力が気になる方は、特に体験レッスンを受けることをおすすめします。

2回体験レッスンの流れは、以下の通りです。

~体験レッスンの流れ~
  1. 公式サイトよりお申込み
  2. 教育プランナーと面談
  3. 教師を選んで2回の体験授業の受講

家庭教師のトライが気になる方は、ぜひ体験レッスンを受講してみてください。

さまざまなパターンを繰り返し学習し身につけよう

_画像

今回は、場合の数・階乗の練習問題について解説しました。

場合の数の基礎が身についている場合は、今回触れた内容を繰り返し解き、さまざまなパターンの問題に対応できる力をつけましょう。

まだ基礎が身についていない場合は、焦らず基礎に戻って復習しましょう。

基礎が身についていない段階で練習問題をたくさん解いても効果はあまりありません。

着実に定着させてから多くの練習問題に取り組みましょう。

画像

数学の成績を上げるならMeTa

苦手な数学を必ず克服できる塾
数学特化のマンツーマン授業
★週1回の演習授業で質問し放題!
3日ごと数学克服プラン作成

_

画像

家庭教師のトライ

春期講習受付中
★今なら入会金無料授業料1ヶ月分無料!
30年以上、120万人の指導実績から生まれたトライ式学習法
★一人ひとりに最適なオーダーメイドカリキュラム

_

画像

ピッタリ塾診断|StudySearch監修!!

30秒以内で完了!
自分に合う学習塾が見つかる!
成績が上がらないを計画的に上げられる
適切な指導を受けて志望校に合格できる

_

【初心者でもわかる】この記事のまとめ

「階乗」に関してよくある質問を集めました。

階乗を使った問題の解き方は?

階乗とは順列の1種で、1個ずつ階段状に数字を下げながら掛け算をしていくことを階乗と言います。複数人の人が1列に並ぶ際などに、階乗を使って場合の数を求めることができます。階乗を使った問題の解き方の詳細はこちらを参考にしてください。

場合の数の問題演習はどうすれば良いの?

基礎を定着させたあとは、さまざまな演習問題に挑戦します。基礎力がついていれば、たくさん問題を解くことで、どんどん解き方を理解し、成績向上につなげることができます。本文で挙げた問題を繰り返し解くといいでしょう。場合の数の問題演習についてはこちらを参考にしてください。

この記事を企画・執筆した人
-StudySearch編集部-
この記事は、StudySearchを運営している株式会社デジタルトレンズのStudySearch編集部が企画・執筆した記事です。
StudySearchでは、塾・予備校・家庭教師探しをテーマに塾の探し方や勉強方法について情報発信をしています。
StudySearch編集部が企画・執筆した他の記事はこちら→